近年來,新能源接入電網的規模逐年擴大。以華北電網為例,預計到今年年底新能源裝機規模約3億千瓦,2025年約4.3億千瓦。受新能源主動支撐能力不足、單機容量小、裝機數量大等因素影響,監測和控制電力系統運行情況的難度增加,給電網可靠穩定運行帶來挑戰。
電力系統轉動慣量下降,頻率穩定水平降低。新能源機組呈現出弱慣性或無慣性特征,在無附加控制的情況下,新能源機組在慣量響應階段并不具備分配系統擾動功率的能力,在一次調頻階段頻率調節能力受限,電力系統頻率變化速度加快、幅度增加;在有附加控制的情況下,受新能源機組運行特性制約,慣量響應及一次調頻的上調空間有限。隨著新能源裝機接入占比增加,電網總體慣量、調頻能力降低,出現故障的風險增加。
新能源機組對電力系統電壓支撐能力不足,系統電壓穩定水平下降。新能源場站一般由無功設備提供電壓支撐,由于并網電壓等級較低,難以為500千伏及以上主網提供有效支撐。如果電力系統故障導致新能源機組進入低電壓穿越狀態,新能源機組難以提供系統急需的動態無功支撐,造成系統電壓穩定水平降低,必須通過降低系統運行效率的方式保證穩定水平。
具有“雙高”特征的電力系統動態特性復雜,功角穩定特性變化大。電力系統動態特性發生較大改變,系統同步穩定逐漸由新能源參與轉變成主導。電網出現故障后容易產生復雜的動態交互作用,可能引起傳統機組功角穩定問題、新能源機組的同步穩定問題以及系統電壓穩定問題并存的復雜情況,給電網運行控制造成困難。
電力電子設備大幅增加,寬頻振蕩問題凸顯。直流、新能源機組、無功補償設備等通過電力電子設備接入電網,這些元件之間存在多時間尺度交互。電力系統出現振蕩時,振蕩頻率呈現寬頻帶特性,寬頻振蕩發生的概率大幅增加,易引發電網失穩。寬頻振蕩的抑制、控制和阻斷面臨較大挑戰。
電力系統連鎖故障風險增加。新能源機組耐過流能力差,當電網故障引發低電壓或高電壓時都會引發換流器過流,易造成新能源機組脫網。新能源機組控制電壓能力不及傳統機組,暫態過電壓問題突出,也增加了新能源機組的脫網風險,可能引發系統頻率和電壓問題,導致連鎖故障。
一、定義及產生原因(LYTCD-9308電力變壓器局放儀適用于各種電力設備)
在電場作用下,絕緣系統中只有部分區域發生放電,但尚未擊穿,(即在施加電壓的導體之間沒有擊穿)。這種現象稱之為局部放電。局部放電可能發生在導體邊上,也可能發生在絕緣體的表面上和內部,發生在表面的稱為表面局部放電。發生在內部的稱為內部局部放電。而對于被氣體包圍的導體附近發生的局部放電,稱之為電暈。由此 總結一下局部放電的定義,指部分的橋接導體間絕緣的一種電氣放電,局部放電產生原因主要有以下幾種:
電場不均勻。
電介質不均勻。
制造過程的氣泡或雜質。經常發生放電的原因是絕緣體內部或表面存在氣泡;其次是有些設備的運行過程中會發生熱脹冷縮,不同材料特別是導體與介質的膨脹系數不同,也會逐漸出現裂縫;再有一些是在運行過程中有機高分子的老化,分解出各種揮發物,在高場強的作用下,電荷不斷地由導體進入介質中, 在注入點上就會使介質氣化。
二、模擬電路及放電過程簡介(LYTCD-9308電力變壓器局放儀適用于各種電力設備)
介質內部含有氣泡,在交流電壓下產生的內部放電特性可由圖1—1的模擬電路(a b c等值電路)予以表示;其中Cc是模擬介質中產生放電間隙(如氣泡)的電容;Cb代表與Cc串聯部分介質的合成電容;Ca表示其余部分介質的電容。
(a) 實際介質 (b) 模擬電路
I——介質有缺陷(氣泡)的部份(虛線表示)
II——介質無缺陷部份
圖1—1 表示具有內部放電的模擬電路
圖1—1中以并聯有—對火花間隙的電容Cc來模擬產生局部放電的內部氣泡。圖1—2表示了在交流電壓下局部放電的發生過程。
圖1-2 介質內單個氣泡在交流電壓下的局部放電過程
U(t)一一外施交流電壓
Uc(t)一一氣泡不擊穿時在氣泡上的電壓
Uc’(t)一一有局部放電時氣泡上的實際電壓
Vc一一氣泡的擊穿電壓
Y r一一氣泡的殘余電壓
Us—局部放電起始電壓(瞬時值)
Ur一一與氣泡殘余電壓v r對應的外施電壓
Ir一一氣泡中的放電電流
電極間總電容Cx=Ca+(Cb×Cc)/(Cb+Cc)=Ca電極間施加交流電壓 u(t)時,氣泡電容Cc上對應的電壓為Uc(t)。如圖2—1所示,此時的Uc(t)所代表的是氣泡理想狀態下的電壓(既氣泡不發生擊穿)。
Uc(t)=U(t)×Cb/Cc+Cb
外施電壓U(t)上升時,氣泡上電壓Uc(t)也上升,當U(t)上升到Us時,氣泡上電壓Uc達到氣泡擊穿電壓,氣泡擊穿,產生大量的正、負離子,在電場作用下各自遷移到氣泡上下壁,形成空間電菏,建立反電場,削弱了氣泡內的總電場強度,使放電熄滅,氣泡又恢復絕緣性能。這樣的一次放電持續時間是極短暫的,對一般的空氣氣泡來說,大約只有幾個毫微秒(10的負8次方到10的負9次方秒)。所以電壓Uc(t)幾乎瞬間地從Vc降到Vr,Vr是殘余電壓;而氣泡上電壓Uc‘(t)將隨U(t)的增大而繼續由Vr升高到Vc時,氣泡再—次擊穿,發生又—次局部放電,但此時相應的外施電壓比Us小,為(Us-Ur),這是因為氣泡上有殘余電壓Vr的內電場作用的結果。Vr是與氣泡殘余電壓Yr相應的外施電壓,如此反復上述過程,即外施電壓每增加(Us-Ur),就產生一次局部放電.直到前—次放電熄滅后,Uc’(t)上升到峰值時共增量不足以達Vc(相當于外施電壓的增量Δ比(Us-Ur)小)為止。
此后,隨著外施電壓U(t)經過峰值Um后減小,外施電壓在氣泡中建立反方向電場,由于氣泡中殘存的內電場電壓方向與外電場方向相反,故外施電壓須經(Us+Ur))的電壓變化,才能使氣泡上的電壓達到擊穿電壓Vc,(假定正、負方向擊穿電壓Vc相等),產生一次局部放電。放電很快熄滅,氣泡中電壓瞬時降到殘余電壓Vr(也假定正、負方向相同)。外施電壓繼續下降,當再下降(Us-Ur)時,氣泡電壓就又達到Vc從而又產生一次局部放電。如此重復上述過程,直到外施電壓升到反向蜂值一Um的增量Δ不足以達到(Us-Ur)為止。外施電壓經過一Um峰值后,氣泡上的外電場方向又變為正方向,與氣泡殘余電壓方向相反,故外施電壓又須上升(Us+Ur)產生第—次放電,熄滅后,每經過Us—Ur的電壓上升就產生一次放電,重復前面所介紹的過程。如圖1—2所示。
由以上局部放電過程分析,同時根據局部放電的特點(同種試品,同樣的環境下,電壓越高局部放電量越大)可以知道:一般情況下,同一試品在一、三象限的局部放電量大于二、四象限的局部放電量。那是因為它們是電壓的上升沿。(第三象限是電壓負的上升沿)。這就是我們測量中為什么把時間窗刻意擺在一、三象限的原因。
三、測量原理:(LYTCD-9308電力變壓器局放儀適用于各種電力設備)
局放儀運用的原理是脈沖電流法原理,即產生一次局部放電時,試品Cx兩端產生一個瞬時電壓變化Δu,此時若經過電Ck耦合到一檢測阻抗Zd上,回路就會產生一脈沖電流I,將脈沖電流經檢測阻抗產生的脈沖電壓信息,予以檢測、放大和顯示等處理,就可以測定局部放電的一些基本參量(主要是放電量q)。在這里需要指出的是,試品內部實際的局部放電量是無法測量的,因為試品內部的局部放電脈沖的傳輸路徑和方向是極其復雜的,因此我們只有通過對比法來檢測試品的視在放電電荷,即在測試之前先在試品兩端注入一定的電量,調節放大倍數來建立標尺,然后將在實際電壓下收到的試品內部的局部放電脈沖和標尺進行對比,以此來得到試品的視在放電電荷。
四、表征參數(LYTCD-9308電力變壓器局放儀適用于各種電力設備)
局部放電是比較復雜的物理現象,必須通過多種表征參數才能全方位的描繪其狀態,同時局部放電對絕緣破壞的機理也是很復雜的,也需要通過不同的參數來評定它對絕緣的損害,目前我們只關心兩個基本參數。
視在放電電荷——在絕緣體中發生局部放電時,絕緣體上施加電壓的兩端出現的脈動電荷稱之為視在放電電荷,單位用皮庫(pc)表示,通常以穩定出現的*大視在放電電荷作為該試品的放電量。
放電重復率——在測量時間內每秒中出現的放電次數的平均值稱為放電重復率,單位為次/秒,放電重復率越高,對絕緣的損害越大。
局放測試的試驗系統接線。
在了解了局部放電的基本理論之后,在本章我們的重點轉向實際操作,我們先介紹局部放電測試中常用的三種接法,隨后我們再介紹整個系統的接線電路,*后我們再分別介紹幾種典型的試品的試驗線路。
局部放電測試電路的三種基本接法及優缺點。
標準試驗電路,又稱并聯法。適合于必須接地的試品。
其缺點是高壓引線對地雜散電容并聯在 CX上,會降低測試靈敏度。
接法的串聯法,其要求試品低壓端對地浮置。
其優點是變壓器入口電容、高壓線對地雜散電容與耦合電容CK并聯,有利于提高試驗靈敏度。缺點是試樣損壞時會損壞輸入單元。
平衡法試驗電路:要求兩個試品相接近,至少電容量為同一數量級其優點是外干擾強烈的情況下,可取得較好抑制干擾的效果,并可消除變壓器雜散電容的影響,而且可做大電容試驗。缺點是須要兩個相似的試品,且當產生放電時,需設法判別是哪個試品放電。
值得提出的是:由于現場試驗條件的限制(找到兩個相似的試品且要保證一個試品無放電不太容易),所以在現場平衡法比較難實現,另外,由于采用串聯法時,如果試品擊穿,將會對設備造成比較大的損害,所以出于對設備保護的想法,在現場試驗時一般采用并聯法。
采用并聯法的整個系統的接線原理圖。
該系統采用脈沖電流法檢測高壓試品的局部放電量,由控制臺控制調壓器和變壓器在試品的高壓端產生測試局放所需的預加電壓和測試電壓,通過無局放藕合電容器和檢測阻抗將局部放電信號取出并送至局部放電檢測儀顯示并判斷和測量。系統中的高壓電阻為了防止在測試過程中試品擊穿而損壞其他設備,兩個電源濾波器是將電源的干擾和整個測試系統分開,降低整個測試系統的背景干擾。
根據上述原理圖可以看出,局部放電測試的靈敏度和準確度和整個系統密切相關,要想順利和準確的進行局部放電測試,就必須將整個系統考濾周到,包括系統的參數選取和連接方式。另外,在現場試驗時,由于是驗證性試驗,高壓限流電阻可以省掉。
幾種典型試品的接線原理圖。
(1)電流互感器的局放測試接線原理圖
a電流互感器接線
(2)電壓互感器的局放測試接線原理圖
A.工頻加壓方式接線原理圖
B.高頻加壓方式接線原理圖
為了防止電壓互感器在工頻電壓下產生大的勵磁電流而損壞,高壓電壓互感器一般采取自激勵的加壓方式。在電壓互感器的低壓側加一倍頻電源,在電壓互感器的高壓端感應出高壓來進行局部放電實驗。這就是通常所說的三倍頻實驗。其接線原理圖如下:
(3)高壓電容器.絕緣子的局放測試接線原理圖
(4) 發電機的局放測試接線原理圖
(5)變壓器的局部放電測試接線原理圖
我們僅僅是在原理性的總結了幾種典型試品的接線原理圖,至于各種試品的加壓方式和加壓值的多少,我們在做試驗的時侯要嚴格遵守每種試品的出廠檢驗標準或交接檢驗標準。
隨著新能源占比提高,同步電源占比下降,電力系統可用調節能力下降,急需研究新能源主動支撐技術,使新能源場站具備一定的頻率和電壓支撐、抑制寬頻振蕩等能力,以保證電力系統可靠穩定運行。
新能源主動支撐技術需提高新能源場站同步穩定能力。新能源場站設備受到單一故障擾動后應具備保持同步的能力,避免因同步失穩引發脫網。例如,可采取功角穩定支撐技術,在規劃設計階段通過優化新能源接入系統方案,提升送出系統的功角穩定水平。
新能源主動支撐技術需使新能源場站具備調頻、調壓能力。新能源場站應具備不低于同等容量傳統機組的調頻、調壓能力。在調頻能力方面,新能源場站應具備同等容量傳統機組一次調頻能力、爬坡能力、慣量響應能力。例如可利用頻率慣量支撐技術改造風電機組控制系統,利用轉子動能實現虛擬慣量,模擬傳統發電機一次調頻特性,實現系統頻率的調節。
接入弱電網的新能源場站需具備抑制寬頻振蕩的功能。新能源場站一方面要根據寬頻振蕩評估結果,采取新能源控制參數優化等措施,主動降低寬頻振蕩風險水平;另一方面要具備附加阻尼功能,通過場站內儲能、靜止無功發生器(SVG)等設備實現寬頻振蕩抑制。
新能源場站要有足夠的短路容量支撐能力。新能源場站需具備送出95%電量的送出能力,同時滿足多場站短路比要求。例如,可采取加裝分布式調相機的方式提高新能源場站短路容量,有效提升系統強度。
新能源場站應具備故障穿越能力,更好地適應電網。光伏發電設備、儲能設備、風機需具備不低于各項標準要求的故障穿越能力,必要時采用零電壓穿越技術,滿足電力系統可靠穩定要求。在系統發生嚴重短路故障場景下,新能源場站實現不脫網持續運行的時間要滿足系統可靠穩定運行要求。例如,雙饋風機可采取直流側附加泄能支路等控制技術,逐步實現零電壓穿越。新能源場站內的電力電子設備應采用具有故障穿越特性的協調優化技術,統籌兼顧暫態過電壓和低電壓問題,使新能源的有功、無功功率控制具備電網友好型特征。
新能源主動支撐技術需提升新能源設備涉網性能。在提高新能源設備耐壓能力方面,采取“新能源+調相機+避雷器”組合技術,解決瞬時過電壓問題,降低電壓波幅。在提高新能源設備耐流能力方面,采取加裝撬棍電路(Crowbar)、斬波電路(Chopper)硬件保護的方式實現過流限制,通過對換流器進行零電壓穿越改造提升換流器耐流能力。
上海來揚電氣轉載其他網站內容,出于傳遞更多信息而非盈利之目的,同時并不代表贊成其觀點或證實其描述,內容僅供參考。版權歸原作者所有,若有侵權,請聯系我們刪除。
電話:021-56774665,56653661,66401707,傳真:021-56774695,24小時專線:13801861238,13167237888,
公司地址:上海市閘北區汶水路8號8號樓,郵編:200072,郵箱:shlydq@163.com